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Mucosal immunity consists of innate and adaptive immune responses which can be influenced by systemic immunity. Despite
having been the subject of intensive studies, it is not fully elucidated what exactly occurs after HIV contact with the female genital
tract mucosa. The sexual route is the main route of HIV transmission, with an increased risk of infection in women compared to
men. Several characteristics of the female genital tract make it suitable for inoculation, establishment of infection, and systemic
spread of the virus, which causes local changes that may favor the development of infections by other pathogens, often called
sexually transmitted diseases (STDs). The relationship of these STDs with HIV infection has been widely studied. Here we review
the characteristics of mucosal immunity of the female genital tract, its alterations due to HIV/AIDS, and the characteristics of
coinfections between HIV/AIDS and the most prevalent STDs.

1. Introduction

The relationship between STDs and HIV infection has been
widely studied. At the end of 2012, approximately 35.13
million people were infected with HIV worldwide. The
average prevalence of coinfection between HIV and genital
inflammatory diseases is of 16.3% [1].

2. Immune Cells of the Female Genital Mucosa

The immune system of the female genital tract is part
of the integrated mucosal immune system, but with some
particular characteristics that differentiate the immunity of
these regions from the systemic immunity [2–4]. Mucosal
immunity is related to its own function, such as maintenance
of embryonic development during pregnancy and female
reproductive organ functioning during copulation; when in
contact with the external environment, the lower portion of

the female genital tract is susceptible to various microorgan-
isms. This portion of the female genital tract comprises the
vagina and the ectocervix, and it has a commensalmicrobiota
that consists predominantly of Lactobacillus [5]. The upper
portion of the female reproductive tract consists of the fallop-
ian tubes, uterus body, and endocervix, which has columnar
epithelial cells and is distincted from ectocervix which is part
of the lower tract characterized by squamous epithelial cells
[4, 6]. The human female reproductive tract (FRT) is not an
immunologically sterile but rather an immunologically active
site [7–12].

Many studies have shown the upper FRT to be immuno-
logically viable and responsive. Recent reports have demon-
strated that TLRs 7–9 are constitutively expressed in fallopian
tubes, uterine endometrium, cervix, and ectocervix, while
expression of TLR10 is restricted to the fallopian tubes.
NOD1 and NOD2 as well as the signal transducer RICK
are detectable in all FRT tissues. Moreover, these receptors
are functional, as treatment of FRT tissue cells with ligands
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for TLR and NOD induces production of proinflammatory
CXCL8 [13], and those receptors actively participate in
immune response to pathogens, as Neisseria gonorrhea and
HIV-1 [14].

Mucosal immunity consists of innate and adaptive
immune responses that can be influenced by systemic immu-
nity [15] and by hormonal changes during the menstrual
cycle. Hormones regulate the immune system throughout the
female reproductive tract in a way that favors conditions for
sperm migration, fertilization, implantation, and pregnancy
[16, 17].

Innate immunity includes barriers such as the epithelium,
mucus, pH, complement system, and cells of the immune
system. The squamous epithelium of vagina and ectocervix
recovers the majority of the exposed surface area of the FRT
mucosa. It comprises a significant physical barrier to small
molecule forms of ingress, such as HIV, due to the thick
multilayered structure [18]. In this epithelium, as well as in
the more fragile single cell layer epithelium of endocervix,
the cells are held together by proteins that form desmosomes,
tight junctions, and adherens junctions, which decrease its
permeability [19]. For some, this is an impenetrable barrier
for agents such as HIV, but Langerhans cells within the
squamous layer have been shown to transmit the virus
for target cells [20]. In addition, CD4+ cells infiltrating
the epithelium can act as potential target cells to initiate
transmission [21].

The mucus is comprised of mucins which form a very
thick gel that functions as a physical barrier to pathogens
[22, 23]. Its aqueous part, rich in immunoglobulins and in
antimicrobial peptides, is another form of protection [24].
This barrier is important to protect the upper tract from
ascending infections.

A major component of the mucus that affects pathogen
transmission is the pH. The pH is maintained by the local
presence of commensal bacteria, which keep the pH acidic
through the production of lactic acid and hydrogen per-
oxide, H

2
O
2
, which has antimicrobicidal activity [5, 25].

Together, the epithelial cells, mucus, lactic acid produced by
commensal bacteria, and proteins of the complement system
form a dynamic physiological structure that interacts with
microorganisms to prevent infections [15].

Macrophages and dendritic cells (DCs) are important
cells which phagocyte and destroy pathogens by acid and
enzyme digestion. The macrophages in the female reproduc-
tive tract are more concentrated in the endometrium and in
the myometrial connective tissue [10]. In the endometrium,
they are regulated by estradiol and progesterone [26]. In
the vagina, the number of macrophages remains stable
throughout the menstrual cycle [10].

DCs are located in the endometrial subepithelial stroma,
whereas vaginal DCs are found in the epithelial layer [27]. It
was recently demonstrated that uterine epithelial cells secrete
soluble mediators to the stroma and that these mediators
can induce a tolerogenic phenotype in local dendritic cell
populations.This phenotype is characterized by a decrease in
the expression of CD83 and CD86 costimulatory molecules
and by a decrease in TLR3 and TLR4 stimulation and
sensitivity stimulation [28].

NK cells consist of approximately 70% of leukocytes in
the endometrial mucosa and these cells have phenotypic
characteristics which are different fromNK cells in the blood,
as they express markers such as CD9, CD69, and CD94 [29].
Uterine NK cells promote a local inflammatory response
through the production of proinflammatory cytokines and
chemokines, such as GM-CSF, IL-10, IL-8, and IFN-𝛾, thus
inducing macrophage activation and generation of cytotoxic
T-cells. However, it is believed that the most important role
of these cells concerns the defense against viruses, especially
herpes [30].

Neutrophils are present throughout the FRT; they are
found in larger quantities in the fallopian tubes and pro-
gressively decrease from the upper reproductive tract to the
vagina [10]. Neutrophil count is relatively constant through-
out the menstrual cycle. However, there is a significant
increase in neutrophils in the endometrium during men-
struation, which is preceded by an increase in IL-8. The
presence of neutrophils may serve two purposes in men-
struation; firstly, it assists in endometrial tissue destruction
via elastase release, which subsequently activates extracellu-
lar matrix metalloproteinases; secondly, it increases innate
immune defense, since the epithelial barrier is interrupted.
Neutrophils express TLRs 1–9 and respond to pathogens
through phagocytosis, production of oxidative compounds,
and release of antimicrobial peptides. It is known that
neutrophils produce protease inhibitors (Trappin-2/Elafin),
𝛼-defensins known as human neutrophil peptides (HNPs),
phospholipases, and cytokines [31].

Innate immune response in the female reproductive
system is regulated by cytokines and chemokines. Type I
interferons (IFNs) are an important cytokine family involved
in female reproductive tract immunity, especially against
viruses, and are composed of the following subtypes in
humans: IFN𝛼, IFN𝛽, IFN𝜀, IFN𝜔, and IFN𝜅. IFNs are
rapidly induced in the presence of viruses and bacteria [7, 32].
Although the role of type I IFNs in innate immune response
is well defined, the role of hormones in the modulation of
these cytokines is still not well elucidated [15]. In most cases,
secretion of chemokines is important to attract immune cells
to the epithelial surface [8]. Among the cytokines involved,
IL-8 and TGF-beta play an important role as they seem to
influence the development and function of local immune
cells [7, 8, 28, 33]. Furthermore, the levels of these cytokines
are influenced by hormones during the menstrual cycle,
particularly in cervicovaginal region [34]. In acute HIV
infections, there is an increase in genital tract cytokine levels,
both those with proinflammatory actions like IL-6 and IL-
12 and those with anti-inflammatory ones, as IL-10 [35]. The
elevated levels of local proinflammatory cytokines are related
to HIV shedding [36]. IL-1𝛽, a proinflammatory cytokine
produced by macrophages, and IL-8, a chemokine produced
by epithelial cells, macrophages, and other cells, were sig-
nificantly associated with HIV-RNA in cervicovaginal lavage
independent of plasma viral load [37]. Thus, the systemic
inflammatory environment is not necessarily related to local
genital tract environment and is not associated with HIV
shedding [38].



BioMed Research International 3

Adaptive immunity is a pathogen-specific response after
T-cell presentation and stimulation by antigen-presenting
cells (APCs) or by B-cells antibodies secretion. This immune
response is driven by APCs which, in the female genital
tract, include macrophages, dendritic cells, Langerhans cells,
and epithelial cells of the cervix and endometrium. The
effector components are CD4+ T-cells as well as the cytokines
they secrete, CD8+ T-cells (cytotoxic effector cells) and
immunoglobulins. CD4+ T-cells are usually subdivided into
Th1, Th2, and Treg and Th17 cells, whose development, in
general, is directly or indirectlymediated by cytokines during
antigen stimulation and which is influenced by hormones
[39–43].

Th1 cell-mediated immunity involves the destruction
of intracellular pathogens by macrophages and cytotoxic
effector CD8+ T-cells activation, which destroy pathogens by
recognizing antimicrobial peptide-expressing cells associated
with MHCI, hence inducing apoptosis through perforin and
granzymes [44]. CD4+ T-cells secrete high levels of IFN-𝛾, a
cytokine that stimulates activation of CD8+ T-cells, leading
to destruction of virus-infected cells [27, 45]. In female
reproductive tract, CD8+ T-cells predominate over CD4+ T-
cells [46, 47]. During the secretory phase of the cycle, when
ovulation and implantation can occur, cellular immunity in
the uterus achieves more immune modulation and impact in
HIV susceptibility [15, 48–52].

Humoral immunity is characterized by the production
of antigen-binding antibodies, thus allowing phagocytosis
and inducing antibody-dependent cell-mediated cytotoxicity
(ADCC) or eliminating the antigens through the complement
system. The immunoglobulins found in the mucosa of the
genital tract are, primarily, IgG and IgA; traditionally, IgA
is the major immunoglobulin isotype found in secretions
[53]. However, a predominance of IgG in relation to IgA
has been observed in FRT secretions [54, 55]. The amount
of immunoglobulins present in cervicovaginal secretions is
strongly regulated by hormones, so it varies during the
menstrual cycle, with a marked decrease in levels during
ovulation [56]. According to Shrier et al. [57], IgA and
IgG levels decrease during the follicular phase, reach a
minimum amount during ovulation, and increase during
the luteal phase. This particular feature may function as
a mechanism which facilitates the survival of sperm in
the genital mucosa and ensures efficiency of fertilization.
However, during this period, alterations in immune functions
could impact increased susceptibility or altered response to
some infections [57–63].

Although B-cells that synthesize and secrete immu-
noglobulin are abundant in the endocervix, they are scanty
in the vagina, hence suggesting the existence of cellular
microenvironments distributed in the genital mucosa. It
is possible that humoral immunity in the vagina canal is
promoted by local production of immunoglobulins and their
transport from the bloodstream to uterine mucosa [54].

As in the intestinal mucosa, IgA is found in the polymeric
form (pIgA) in the genital mucosa, and it is transported to
the lumen via polymeric immunoglobulin receptor (pIgR)
in the secreted form of IgA (S-IgA). PIgR expression in
the epithelium of the female genital tract is upregulated by

cytokines from activated T-cells, such as IFN-𝛾, and also
by hormonal changes [54]. Variations in pIgR expression by
epithelial cells, caused by female sex hormones, may explain
the differences in immunoglobulin levels in cervicovaginal
secretions during the menstrual cycle [64]. However, IgG
is a monomeric immunoglobulin, and it is probably not
transported via pIgR. Nevertheless, IgG is also found in
mucous secretions and has a key role in host immune
response [65]. The role of IgG in mucosal secretions is
controversial, since this isotype can act both as a protective
mechanism and as a cytotoxic mediator due to its ability to
activate complement proteins and induce antibody-mediated
cytotoxicity via polymorphonuclear leukocyte Fc receptor,
which would damage mucosal epithelium [54].

Recent studies indicate that antibodies in female repro-
ductive tract from healthy HIV(+) and HIV(−) inhibit
HIV infection and may play a role in the inhibition of
HIV transmission [66]. Several reports have pointed out
that IgA in genital mucosal can have an important role
in inhibiting HIV transmission [67–70]. Although vaginal
secretions of HIV-infected women exhibit IgG directed to
a broad range of Env antigens and IgA reactivity to gp41,
secretions of women that remain uninfected despite ongoing
exposure to HIV-1 contain IgA mostly directed at HIV-1
gp120/gp140. These mucosal HIV-1-specific IgA antibodies
could contribute to the protection of these women or be
a marker of another protective function [71]. Besides these
properties, antibodies in genital mucosa have several func-
tions in the anti-HIV immune response, such as secretory IgA
aggregation, Fc-mediated inhibition, neutralization of CD4T
cell infection, lysis of infected cells by NK cells, phagocytosis
after antigen presentation, and inhibition following cytokine
and chemokine production [72]. Most HIV-1 vaccination
strategies aim to induce human HIV-specific antibodies able
to inhibit the infection of target cells at the onset of viral
transmission; however, inducing such bNAbs by vaccination
is likely to be very difficult [73–75]. As HIV transmission
at mucosal sites involves specific HIV targets, vaccination
should induce an immune response that protects all the dif-
ferent potential mucosal target cells, and strategies to develop
local immune responses should therefore be encouraged,
leading to a strong and long-lasting response [72].

3. HIV/AIDS and Cells of the Female
Genital Tract

Sexual transmission is the main route of transmission of
HIV [76], with an increased risk of infection in women in
comparison to men [76, 77]. Several characteristics of FRT
make it susceptible to colonization, to the establishment of
infection, and to the systemic spread of the virus, which
causes local changes thatmay eventually facilitate infection by
other microorganisms. During the infection establishment,
the virus comes into contact with characteristic cells of the
female genital tract—such as epithelial cells—and also with
resident cells of the innate immune system, adaptive immune
system, and mucosal-associated lymphoid tissue (MALT).
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Despite being a subject of intensive studies, it is not
fully elucidated what exactly occurs after HIV contact with
the mucosa of female genital tract. Nevertheless, it is well
established, especially in experimental models using Simian
Immunodeficiency Virus (SIV) in Rhesus monkeys, that the
infection starts with a small local virus population in the
genital tract, which evolves into a marked systemic infection
in a few weeks [78, 79]. Even though, conceptually, the local
immune system is the first line of defense against infections,
the induction of inflammatory process acts as a viral spread
factor, so the activation of cells of the local immune system is
a crucial factor for HIV establishment.

It is important to note that, at the cellular level, HIV infec-
tion occurs through interaction with receptors and corecep-
tors present in many cell types.The primary receptor for HIV
entrance into a host cell is CD4, and the chemokine receptors
CXCR4 and CCR5 are the major coreceptors [80–82]. Two
main strains of HIV are described based on coreceptor usage,
R5 and X4. Furthermore, several other receptors have been
described as essential for HIV internalization and/or transfer
between cells [83], such as mannose receptors, DC-SIGN,
gal ceramide, heparan sulfate proteoglycans (HSPG), 𝛼4𝛽7
integrin, and gp340 [84–87].

Local epithelial cells play an important role in the devel-
opment of infection. Changes in epithelial thickness due
to hormonal influence during the menstrual cycle, admin-
istration of local or systemic, hormonal or nonhormonal
contraceptive methods [88–90], and menopause [91, 92]
appear to influence the permissiveness to HIV infection,
although further studies in humans are needed to determine
this influence in vivo.

In general, three main mechanisms are associated with
HIV migration through the epithelial cells of the female
genital tract: through gaps or microlesions in the epithe-
lial barrier; through transcytosis, which may be mediated
by neonatal Fc receptor (FcRn); or through paracellular
movement between epithelial cells [50]. Moreover, despite
not being primary targets of HIV invasion, epithelial cells
of the female genital tract are found to be permissive to
HIV infection in vitro, although this phenomenon is still
controversial in vivo [93–99].

In vitro studies also indicate that epithelial cells of the
genital tract respond differently to R5 and X4 strains of
HIV through cytokine production [98, 100–104] and also by
driving cytokine production by other immune system cells,
especially macrophages, which may interfere with the ability
of these cells to recruit CD4+ T-cells [98].

Even though epithelial cells do not appear to be able
to generate new virions under normal conditions, they can
function as a virus transmission mechanism to permissive
cells through HIV contact and transfer, thus mediating the
systemic spread [105]. Recently infected cells have been
detected in the cervical submucosa 3-4 days after primary
infection and, in this initial period, the mucus in this region
can act as a protective, although relatively inefficient, factor
[106]. Furthermore, the presence of HIV directly affects the
integrity of the epithelial barrier in the female genital tract
mucosa, allowing for translocation of pathogens [107].

Dendritic cells (DCs) are believed to be the primary target
of HIV infection, spreading the infection to the associated
lymph nodes and acting as a disseminator [108–111]. More-
over, these cells can invaginate into the epithelium towards
the lumen, capturing HIV and allowing its transmission
to the submucosal cells, that is, phagocytes and CD4+ T-
cells [109]. However, these cells also act directing anti-HIV
adaptive immune response and priming CD4+ and CD8+ T-
cells. Viral receptors present on DCs, such as TLR-8 and DC-
SIGN, have been associated with the spread of HIV to CD4+
T-cells [112]. On the other hand, 𝛼-defensins 1-3 production
by DCs is associated with a slower progression of HIV
infection [113]. Moreover, several studies have pointed to an
important interaction of HIVwith a specific type of dendritic
cells called Langerhans cells (LC), which are characterized
by the expression of Langerin and by being found mainly
in mucosae; they can get infected with HIV and act as a
viral inhibitor [114], although they seem to act more as a
mechanism of capture and transport of viruses to CD4+ T-
cells [21, 115–117]. HIV infection leads to a reduction in LC
density in the female genital mucosa [118], and the systemic
activity of HIV infection also affects the population of LCs
in the vagina, which decreases in the presence of detectable
HIV-RNA but is not decreased in the absence of detectable
plasma levels of HIV-RNA [119].

Among other cellular components of innate immunity
in the female genital tract mucosa, macrophages participate
actively in HIV infection; they are effector cells and one of
the main targets of this virus. HIV infection leads to changes
in macrophages both systemically and in the female geni-
tal tract mucosa. In general, HIV-infected monocytes and
macrophages have several impaired or modulated functions
which promote viral persistence or delay the development of
the adaptive immune system, for instance, impaired antigen-
presenting ability [120], impaired T-cell-activation ability
[121, 122], impaired ability to engulf and destroy intracellular
microorganisms [123–126], decreasing expression of surface
molecules, such as CD36 [127], decreasing expression of Fc
receptors [128, 129], impaired TLR signaling response [130],
and increased susceptibility to phagocytosis [131].

Several studies have reported contradictory outcomes
on the role of macrophages as cells promoting virus spread
through vaginal mucosa transmission, especially when com-
pared to in vitro studies with HIV-infected cells and SIV
infection models. If, on the one hand, the authors indicate
that the initial establishment of HIV infection is sustained
by macrophages [132–134], infection of Rhesusmonkeys with
SIV failed to show this relationship, so it is required to
determine the actual role of these cells as protagonists in the
establishment of the infection [135]. However, despite such
discrepancies, these cells have been continuously implicated
as carriers of infection to CD4+ T-cells, to local cells, and
to associated lymphoid tissues [112, 136]. A feature that may
facilitate this process is the increased expression of CD4,
CXCR4, and CCR5 receptors associated with HIV infection
in vaginal macrophages rather than with other mucosae [137,
138].

On the other hand, studies have shown that these cells
produce cytokines and chemokines that act as promoters
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of intense inflammatory infiltration in the mucosal lining
of the female genital tract [139]. This inflammation plays
a paradoxical role; it is, at the same time, an effector
mechanism of antiviral immunity and one of the main
promoters of the establishment of HIV infection, allowing
the virus to multiplicate quickly and to infect new susceptible
cells [139]. Indeed, enhanced HIV-1 replication in ex vivo
ectocervical tissues from postmenopausal women correlates
with increased inflammatory responses [140]. In this context,
there is a marked induction of CCL2, CCL3, CCL4, CCL5,
CXCL8, and CXCL10 after infection with SIV, as well as a
systemic increase of CCL2, CXCL8, and CXCL10 in humans,
concurrently with viremia peak after infection with HIV
[141]. Once HIV is primarily concentrated in mucosae,
they probably play a major role in the production of these
mediators [78, 142]. These chemokines have a direct effect
on the recruitment of new macrophages and CD4+ T-cells—
targets of viral spread [79, 142–144]. Even though the local
production of chemokines attracts more HIV target cells,
chemokines may act as competitors for binding CCR5 and
CXCR4 receptors [145, 146].

HIV interference in the macrophages functions, par-
ticularly in those related to viral persistence, is mainly
mediated by Nef, which is a protein capable of modulating
the surface receptors expression, interferingwith intracellular
signaling pathways, increasing the production of cytokines
and chemokines, and changing phagocytic and autophagic
capacity [147–152].

Although the relationship of HIV with the number of
neutrophils and their functional impact is not well known
and investigated, studies have pointed out that neutrophils
are increased in the female genital tract in chronic infection
due to the local increase of IL-1𝛽, TNF-𝛼, IL-8, IL-6, and IL-
10 [153]. It still needs to be clarified whether this increase is,
to some extent, a mechanism of cell control or recruitment
for the perpetuation of infection. In a more general context,
HIV infection has an impact on the formation of neutrophils
in the bone marrow [154] and it reduces the expression of
CD13 and CD16 [155, 156]. These cells have recently been
implicated in the suppression of CD4+ T-cells via PD-L1/PD-
1 [157] and in antibody-dependent cell death [158]. More-
over, hypochlorite/hypochlorous acid (HOCl) produced via
myeloperoxidase (MPO) secretion to the outside of the
cells has emerged as a mechanism of HIV destruction [159,
160]. On the other hand, HIV-1-infected peripheral blood
mononuclear cells enhance neutrophil survival and HLA-
DR expression via increased production of GM-CSF [161].
Recently, Neutrophil extracellular traps (NETs) have been
described as a host defense response to human immun-
odeficiency virus-1 preventing virus spreading [162]. The
recruitment of neutrophils and mononuclear phagocytes to
an infectious site brings into play HNPs (human neutrophil
peptide) and further increases in LL-37. Despite significant
HIV inhibitory activity, cervicovaginal levels of 𝛼-defensins
1-3 (HNPs 1-3) and LL-37 were associated with increasedHIV
acquisition, perhaps due to their association with bacterial
sexually transmitted infections [163]. On the other hand,
human neutrophil 𝛼-defensin 4 inhibits HIV-1 infection in
vitro [106].

Despite the clear involvement of NK cells in the immune
response against the virus, classical studies have demon-
strated that HIV-positive individuals have a poor response
of these cells [164–166]. NK cells fail to degranulate and to
produce IFN-𝛾, leading to poor response against bacteria
[167], to human papillomavirus (HPV) [168, 169], and to
an impaired antibody-dependent cell-mediated cytotoxicity
associated with HIV infection progression [170]. Studies
suggest that, at least in part, these defects can be related to
functional depletion of NK cells, with possible involvement
of PD-1 and TIM-3 [171, 172]. As previously discussed, female
genital tract NK cells express different phenotypic markers
from NK cells in the bloodstream, such as CD9, CD69
and CD94 [29]. It seems that uterine NK cells can inhibit
the infection of target cells by HIV X4 but not R5 strains
via the secretion of CXCL12 [29]. Functional modulation
of NK cells has been correlated with resistance to HIV
infection in highly exposed HIV-seronegative (HESN) [173].
Killer immunoglobulin-like receptors (KIRs) regulate natural
killer (NK) cells in a human leukocyte antigen (HLA)—in a
dependent manner, and KIR3DL1/S1 and KIR2DL2/DL3 loci
have been linked to resistance to HIV infection [174, 175].
Also, KIR/HLA interactions may influence resistence versus
susceptibility to virus transmission [175–179].

Among the cells in the mucosa of the genital tract,
CD4+ T-cells seem to be the most important target for the
establishment of a successful HIV infection [180]. Several
studies have demonstrated that the infection starts with
a small number of CD4+ T-cells infected with HIV that
multiply before systemic viremia is established [181, 182]. As
aforementioned, this key role is closely related to the presence
of receptors and coreceptors that mediate the infection of
these and other cells of the immune system. In fact, studies
in humans have demonstrated that HIV infects, extremely
effectively, CD4+ T-cells in several areas of the female genital
tract, especially vagina, ectocervix, and endocervix [117].

Classic studies had already indicated that, besides the
reduced CD4+ T cell count, several dysfunctions were
observed in CD4+ T-cells from HIV-positive individuals,
including an impaired response to polyclonal stimuli or recall
antigens, reduced production of IFN-𝛾 and IL-2, deficient
TCR signaling pathways, and a proliferative capacity decrease
[183–187].

Interestingly, studies have shown that different subtypes
of CD4+ T-cells have different levels of susceptibility to HIV
infection [117]. For instance, the T-cell subset expressing
the integrin alpha4beta7—a mucosal homing receptor—is
highly susceptible to HIV-1 infection [188]. Furthermore,
most HIV infections through sexual intercourse apparently
involve viruses that use CCR5, that is, R5 tropic strains,
which implies that they preferentially infect cells that express
this receptor [189–191]. Nevertheless, there is a significant
population of CD4 T-cells expressing CXCR4 in the mucosa
of the female genital tract, so its importance in the acquisition
and development of infection needs to be clarified [192].
Interestingly, postmenopausal women show an increase in
CD4+ CCR5+ T-cells in the gastrointestinal tract, which may
lead to an increased susceptibility to HIV infection, even
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though the exact mechanism for this increase also needs to
be elucidated [193].

Sexual transmission of human immunodeficiency virus
type 1 (HIV-1) most often results from a productive infection
by a single transmitted/founder (T/F) virus that rises to
a productive systemic infection after approximately two
weeks [194–198]. Recent reports have pointed out that T/F
viruses utilize the CCR5 coreceptor for entry and replicate
efficiently in cultures of activated primary T lymphocytes and
replicate in monocyte-derived macrophages (MDM) [199].
Also, it seems that transmitted/founder and chronic HIV-1
are distinguished by differential utilization of CCR5—with
T/F viruses presenting proteins with higher CCR affinity
[200–202], favoring preferential sexual transmission of R5
strain.

Recent findings have supported the impression that,
althoughHIV is virtually able to infect any CD4+ T cell, there
is a preference for the infection of activated lymphocytes
[181]. T-cell profiles with a more inflammatory nature, such
as Th17, are preferably infected and allow for greater viral
replication, resulting in depletion of these cells in HIV-
infected individuals compared with healthy individuals and
showing a proportional decrease in viral load [203–206].
Moreover, it was demonstrated that a subset of activated
cervical CD4+ T-cells that expresses 𝛼4𝛽7, CCR5, IL-17A, and
IFN-𝛾 preferentially binds HIV-1 gp120 in vitro, and these
cells are almost entirely depleted from the cervix in vivo
during HIV infection.The presence of multiple susceptibility
markers in a subset of CD4+ T-cells in the genital tract
suggests that these cells may play a key role as HIV targets
during sexual transmission [192].

Along with Th17 cells, IL-22-producing T-cells and
Th22 cells were dramatically depleted during chronic HIV
infection, concomitant with epithelial integrity impairment
and increased microbial translocation [207]. Furthermore,
circulating Th22 cells expressed a higher level of the HIV
coreceptor/bindingmolecules CCR5 and 𝛼4𝛽7 than CD4+ T-
cell subsets in HIV-uninfected participants, but this was not
the case after HIV infection [207]. The role of the differential
infection of these T-cell profiles in HIV susceptibility and in
other associated infections needs to be better clarified.

A recent review brought an interesting thought that
could help explain the low infection-to-exposure ratio and
the selection of the founder strain after sexual exposure to
HIV [208]. The founder strain is a single virus variant that
usually initiates the infection with HIV, despite the pres-
ence of thousands of genetically diverse viral strains in the
transmitting partner [190, 209, 210]. Comparing this situation
with the transmission dynamics of infectious diseases, where
differences in the ability of individuals to spread the infection
may set whether an outbreak will turn into an epidemic [211],
and based on evidence from molecular biology and virology,
the authors suggest that heterogeneity among CD4+ T-cells
could yield wide variation in the capability of individual cells
of becoming infected and of transmitting HIV to other cells
[208]. Using an epidemiological framework, they suggest that
such heterogeneity among CD4+ T may play a critical role in
the establishment and spread of HIV in the genital mucosa
after sexual exposure [208]. Although there are no in vivo

evidence that this phenomenon occurs (despite differences
in subsets CD4+ T-cells in susceptibility to HIV infection, as
discussed above), it may explain why some women might be
more susceptible to HIV sexual transmission than others.

After the establishment of HIV infection in the genital
mucosa, the presence of cytotoxic T-cells is detected not only
in this region but also in mucous membranes in general.
Nevertheless, as previously suggested, the response of these
cells is “too little and too late” to contain viral replication
and dissemination [212]. A previous report showed that
proinflammatory cytokines in the female genital tract may
promoteHIV replication and shedding.These cytokines were
associated with increased levels of HIV-specific CD8 effector
cells in the genital mucosa but these were not able to control
genital HIV shedding [213].

As the infection progresses, CD8+ T-cells can be detected
in the genital tract mucosa of HIV-positive women [213–
215]. Although, in general, CD8+ T-cells from healthy indi-
viduals are polyfunctional, the ability of cervical CD8+ T-
cells to exhibit polyfunctional responses (ability to produce
2 or more cytokines) following HIV stimulation is inversely
associated with plasma viral load and positively associated
with blood CD4 counts, suggesting that clinical status had
an impact on the functionality of HIV-specific T-cells in the
mucosa and that cervical T-cells are largely monofunctional.
Furthermore, polyfunctional T-cells in the cervix of women
with high blood CD4 count and low plasma viral load do not
protect from HIV genital shedding [216].

4. Immunity of Female Genital Mucosa,
HIV/AIDS and STDs

4.1. Bacterial Vaginosis and HIV/AIDS. Bacterial vaginosis is
a condition caused by an alteration in the genital tract flora
in which lactobacilli are predominantly replaced by anaer-
obic bacteria, including Gardnerella vaginalis, Mycoplasma
hominis, and Atopobium vaginae as well as species of Pre-
votella, Mobiluncus, and Peptostreptococcus [217]. Considered
the most common cause of vaginitis, bacterial vaginosis is
associated with urinary tract infections, pelvic inflammatory
disease, preterm labor, and also an increased risk of HIV
infection [218, 219]. The incidence of bacterial vaginosis
ranges from 8% to 23% of women of reproductive age,
whereas the incidence rate is as high as approximately 50%
of HIV-infected women [220, 221].

The lactobacilli present in a healthy vaginal microbiome,
especially Lactobacillus acidophilus, predominantly produce
hydrogen peroxide (H

2
O
2
), which is responsible for main-

taining a low vaginal pH and for inhibitingmicrobial growth,
including the causative agents of bacterial vaginosis [222].
H
2
O
2
also has a virucidal effect on HIV-1 [223]; it inhibits

viral adhesion and replication, as well as CD4+ T cell
activation, therefore reducing the number of HIV target cells
in the vagina [224].

Like other sexually transmitted pathogens, bacterial vagi-
nosis has been associated with increased acquisition and
transmission ofHIV inwomen [221, 225]. Studies have shown
that an increasedHIV shedding is found in vaginal secretions
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of women with bacterial vaginosis or with low levels of
lactobacilli [226, 227] and also that these secretions/fluids are
able to stimulate HIV expression in vitro [164].

The immunosuppression caused by HIV can increase
the frequency or severity of bacterial vaginosis. The disease
is more persistent among HIV-infected women with lower
CD4 cell counts who are also more likely to develop more
severe symptoms of bacterial vaginosis [220]. Analyses of
vaginal secretions of HIV-seropositive women demonstrated
an inverse correlation between viral load and lactobacillus
species and a positive correlation between bacterial vaginosis
andMycoplasma hominis [228].

Previous studies suggested that anaerobic bacterial
growth and increased pH observed in the establishment of
bacterial vaginosis profile inhibit the concomitant growth of
Candida in these patients [229]. Bacterial vaginosis also influ-
ences the development of cervical intraepithelial neoplasia,
possibly due to the production of nitrosamines that can cause
DNAdamage and to the change in the profile of cytokines that
decrease the ability of the immune system to eliminate HPV
infection [230]. Furthermore, HIV infection itself alters the
vaginal immune response and the cytokine profile, further
increasing the etiologicmechanisms between this association
of bacterial vaginosis and precancerous lesions [231].

4.2. Candidiasis and HIV/AIDS. Candida albicans, the main
causative agent of vaginal candidiasis, colonizes the genital
tract of 75% of women of reproductive age, regardless of
sexual activity [232], and about 5% to 8% of these women
experience recurrent infection [233].

HIV infection has been considered one of the risk factors
for the development of symptomatic Candida infection,
together with pregnancy, uncontrolled diabetes mellitus, and
use of corticosteroids, antibiotics, or oral contraceptive pills
with high estrogen concentrations [234].

In the HIV/AIDS scenario, mucosal candidiasis is one
of the oldest and most common opportunistic infections in
HIV-positivewomen [235, 236]. Although it is not considered
a syndrome-defining illness, vaginal candidiasis is classified
by the centers for disease control and prevention for human
immunodeficiency virus as a condition whose course or
management may be altered by HIV infection [237–240].

Although a higher frequency of vulvovaginitis in women
infected with HIV is not yet fully established, most studies
show a higher prevalence of vaginal candidiasis with a higher
recurrence risk in HIV-infected women than in uninfected
women [236, 239, 241–243]. Other authors also claim that the
increased rates of Candida colonization are associated with
decreased CD4+ T cell count, especially below 200 cells/mm3
[241, 244, 245], indicative of systemic immune failure.

HIV infection is clearly involved in changes in the normal
vaginal flora that favor the development of local infections
and sexually transmitted diseases, which, in addition to
increasing local replication of the virus, potentially play a role
in the sexual transmission of HIV [246, 247]. This is because
HIV infection reduces the number of CD4+ T-cells and
leads to increased chemokine levels in the vaginal mucosa
[242, 248], whereas vaginal infections increase susceptibility

to virus infection due to a lower production of hydrogen
peroxide by lactobacilli and to the disruption of the normal
epithelial barrier [249]. On the other hand, as previously
discussed, inflammatory stimuli and consequent immune
activation could act as a direct mechanism that attracts target
cells and favors HIV replication [139, 140].

The symptoms of vaginal candidiasis often occur at an
earlier stage in the course of HIV infection, and they are
associated with the reduction of the normal vaginal flora and
pH, favoring germ tube formation in yeast cells and increased
inflammation and virulence [250], even though the severity
of the infection is not increased in HIV-positive women. Fur-
thermore, after vaginal infection treatment, the recurrence
time is higher in HIV-positive patients, and the time interval
correlates closely with the severity of immunosuppression
[251].

4.3. Trichomonas Vaginalis and HIV/AIDS. Trichomoniasis,
which is caused by the flagellated protozoan Trichomonas
vaginalis, is one of the most common sexually transmitted
diseases (STDs) in HIV-infected women and uninfected
women. Epidemiological studies show prevalence rates rang-
ing from 6% to 27% in the group of HIV-positive women,
with values reaching 36% in reinfection episodes by the
protozoan [220, 252, 253].

This STD is associated with pregnancy complications
such as premature rupture of membranes and premature
birth, infertility, and cervical cancer [254, 255]. The fact that
HIV infection risk is 2–9 times higher in the presence of a
sexually transmitted disease [256] has highlighted trichomo-
niasis as an important disease in the scenario of HIV/AIDS
infection and transmission [257], and effective treatment of
this disease is an important strategy for HIV prevention.

Trichomoniasis is considered a risk factor for HIV trans-
mission and infection because it stimulates an intense inflam-
matory response of the vaginal epithelium and ectocervix
with evidence of punctate hemorrhages, causing disruptions
of the urogenital epithelium that act as virus gateways [258].

Trichomonas infection in HIV-positive women is associ-
ated with an increase in genital shedding of HIV [259] and,
similarly to what happens with vaginal candidiasis in HIV-
infected women, the prevalence of trichomoniasis increases
with the decline in immune function measured by CD4+ T
cell count and nonadherence to HAART [260].

4.4. Genital Herpes and HIV/AIDS. Genital herpes, caused
by Herpes simplex type-2 (HSV-2), is a chronic sexually
transmitted disease of high global burden that causes genital
ulcers [261]. The incidence rates of genital herpes in HIV-
positive women have been reported to vary between 11%
and 50%; however, more than 80% of these patients are
asymptomatic [262–264].

Considered one of the greatest risk factors for HIV
acquisition in developing countries, HSV-2 seroprevalence
rates reach 90–95% in HIV-infected women [265], and the
frequency of reactivation of herpes simplex type-2 is also 2–
4 times higher in this population than in uninfected women
[266, 267].
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As in diseases such as syphilis and chancroid, HSV-2 is
particularly important in the acquisition and transmission
of HIV since it allows for the disruption of mucosa causing
inflammation and the development of ulcers, which facilitates
HIV entry [268].

Coinfection between HIV and HSV-2 and the bidirec-
tional synergistic relationship between them increase the
spread of viruses causingAIDS and genital herpes.HIV infec-
tion increases genital shedding and the frequency of herpes
reactivation, which, in turn, increases the concentrations of
HIV in the plasma and in genital secretions and the risk of
HIV transmission and disease progression [269, 270]. On
the other hand, coinfection of CD4 T-cells by HIV and HSV
results in a rapid unidirectional replication of HIV, whereas
the acquisition, reactivation, and shedding of HSV-2 are
facilitated by disturbances in the vaginal flora resulting in
bacterial vaginosis [271, 272].

The frequency and severity of HSV-2 recurrences are
enhanced by the immunodeficiency caused byHIV infection.
Even though treatment with high potency antiretroviral
therapy reduces the frequency and severity of genital herpes,
HIV-seropositive women have a higher number of genital
ulcers and increased viral shedding than uninfected women
[273, 274]. In general, genital herpes ulcers are more gen-
eralized, painful, persistent, and recurrent in HIV-positive
patients [275].

4.5. Pelvic Inflammatory Disease (PID) andHIV/AIDS. Pelvic
inflammatory disease (PID) comprises a spectrum of inflam-
matory disorders of the female upper genital tract that are
caused by microorganisms arising from the uterine cervix
[276]. The signs and symptoms are nonspecific and varied,
and 70–80% of the cases are asymptomatic [277]. Classically
associated infectious agents include Chlamydia trachomatis
and Neisseria gonorrhoeae.

Chlamydia is the most common sexually transmitted
disease (STD) in the world, more common than syphilis and
gonorrhea [278]. It is an obligate intracellular bacterium that
causes polymorphonuclear infiltration in the epithelium at
the onset of infection, followed by subepithelial mononuclear
infiltration with tissue injury and scarring, which leads to
the following frequent sequelae, infertility, ectopic pregnancy
[279], and chronic pelvic pain.

This bacterium has several factors involved in cytokine
production through the stimulation of TLRs [280], HSP60
[281], and chlamydial CpG-DNA [282]. Along with TNF-𝛼,
IL-1 (a cytokine produced by infected epithelial cells) induces
the production of IL-8 by endothelial cells, epithelial cells,
and monocytes; the latter are the major neutrophil chemo-
tactic factor [279]. Furthermore, IL-1 binding to its respective
receptor initiates a mitogen-activated protein (MAP) kinases
pathway, such as the p38 pathway, which is also activated by
binding to TLRs and to the TNF receptor, and which will
promote the transcription of adhesion molecules [283].

The recruitment of leukocytes in genital inflammatory
diseases such as infections caused by C. trachomatis and N.
gonorrhoeae enhances the acquisition and transmission of
HIV [284], with an increase in the concentration of HIV-1 in

the genital secretion. Similarly, the significant epithelial lesion
in cases of Chlamydia infection is definitely a contributing
factor in coinfection [285].

Moreover, proinflammatory cytokines generally stimu-
late replication of HIV virus in the genital tract, as they
activate nuclear factor 𝜅B as well as recruit and activate
leukocytes, which are the targets of the virus [153]. Cytokines
such as TNF-𝛼 can permeabilize the epithelial intercellular
junctions, facilitating HIV infection [107]. The exact def-
inition of the role of each inflammatory mediator is still
divergent in the literature, probably due to the difference in
the cohort studied and to the various factors involved.

Baeten et al. recently revealed a correlation between
high levels of HIV-1 RNA in the genital secretion and an
increased risk of transmission, regardless of the serum levels
of HIV. Genital shedding of HIV1 can happen even in
women with undetectable serum levels of HIV-1 [286], an
occurrence which may be explained by the infections of the
lower genital tract [38]. It is known that HAART (highly
active antiretroviral therapy) reduces HIV-1 concentration in
vaginal secretions [287] and in the plasma, as well as the
risk of transmission [288, 289], but it does not eliminate it.
An approach that integrates both treatments, HAART and a
specific approach for each STD, is certainly more effective in
controlling the disease. Nonetheless, because of insufficient
monitoring or absence of symptoms in patients with AIDS,
themajor challenge is allowing for the early diagnosis of these
STDs.

Diseases with genital discharge, such as gonorrhea, are
particularly likely to increase HIV release in semen and
cervicovaginal secretions [290]. Previous reports showed that
gonorrhea is the sexually transmitted disease most associated
with HIV, with an increment in the risk of HIV infection
[248, 291–293].

N. gonorrhoeae activates TLR2 on CD4 T-cells, thus
facilitating the infection, even at an earlier phase of the
viral cycle, immediately after infection [292]. Furthermore,
the bacterium increases the ability of the virus to infect
dendritic cells, which, in turn, can introduce the virus to other
susceptible cells [293].

4.6. Human Papillomavirus (HPV) and HIV/AIDS. There are
about 40 genotypes of HPV capable of infecting the genital
tract, and they are divided into two groups based on their
oncogenic potential: low risk (causing genital warts/warts)
and high risk [294], causing cervical cancer. Cervical cancer
is the second most common cancer in women worldwide
[295] and, in almost all cases, it is associated with persistent
infection by high risk HPV types, especially 16 and 18 [296].
In turn, infection by HPV, a DNA virus, is the most common
sexually transmitted disease in the world [297], and it causes
anogenital lesions that are more prevalent in women. High
risk HPVs are also associated with vulvar, vaginal, penile,
anal, and oropharyngeal cancers [298]. Sexually active men
seem to be a reservoir of high risk HPV subtypes [299].

The virus infects basal epithelial cells throughmicroabra-
sions on the epithelial surface. The oncogenesis depends
on the integration of the viral episome into the DNA of



BioMed Research International 9

the epithelial cell [300] and on the activity of the viral
oncoproteins E6 and E7 [301]. Both CD4+ and CD8+ T-cells
are capable of recognizing these proteins. E6 is responsible for
the degradation of proapoptotic proteins such as p53 [302],
Mantovani and Banks [303]; whereas E7 promotes cell entry
into the S phase of the cell cycle [304], and it integrates with
the tumor suppressor protein pRb [305].There are few copies
of the viral genome in the basal layer [304]; the production
of infective particles occurs only in the more differentiated
layers of the epithelium [306].

Seroconversion occurs in 60% of immunocompetent
women, but antibody production during infection is not able
to prevent reinfections, probably due to the low titers [307].

The cellular immune response against viral proteins in
immunocompetent individuals is responsible for suppressing
the infection in 90% of patients in two years [308], with
regression of premalignant and low grade squamous intraep-
ithelial lesions, even without therapeutic interventions. In
individuals with HIV/AIDS, this clearance is impaired [309].

The development of HPV-16 associated lesions, the most
common high risk HPV subtype and that has early pro-
gression [302], is connected with the ineffective immune
response against HPV-16 E6 and E7 [310].The immune status
also appears to influence the prevalence of HPV-18, which
is between 15% and 18% in immunocompetent women and
approximately 80% in immunocompromised women [300].

In persistent HPV infection there is no significant local
inflammatory reaction, and therefore there is no significant
increase in the risk of HIV acquisition/transmission in the
genital tract [311]. Nonetheless, in nonpersistent infections,
there is an increased number of T-cells in the infected cervix
[312]. As with the majority of intracellular viruses, these cells
are necessary to overcome the infection, and, because they
are HIV targets, there is a transient increase in the risk of
HIV infection during the regression process of HPV lesions
[313]. Another potential mechanism is that the E7 protein of
HPV-16 decreases the expression of E-cadherin, an epithelial
adhesion molecule, hence increasing the permeability of the
epithelium to HIV [314]. The meta-analysis performed by
Houlihan et al. indicated a twofold increase in the risk of
HIV infection when there was prior infection by any HPV
genotype [294].

Furthermore, HIV coinfection increases the detection,
persistence, and severity of HPV lesions [315]. This is caused
by immunosuppression, which generates persistent HPV
infection, infection by subtypes that are more susceptible
to cause carcinomas, simultaneous infection by several sub-
types, reactivations, and infection by HPV in several sites in
the anogenital region [302]. In HIV-infected women, cervical
cancer behaves more aggressively, withmore recurrences and
a worse prognosis, as well as being somewhat responsive to
traditional therapies [316].

5. Conclusion

The female genital tract mucosa has an inflammatory envi-
ronment somewhat independent from the systemic envi-
ronment concerning HIV shedding. Several studies showed

genital HIV shedding in women with undetectable plasma
viral load. This occurrence is due to local immune particu-
larities and mainly because of coinfections by other sexually
transmitted diseases. There is a bidirectional synergistic
relationship in which HIV infection favors the development
of local infections and these diseases increase local replication
of the virus.

Certainly, an adequate approach to control this process
would be the combination of HAART and the specific
treatment of each sexually transmitted disease. The great
challenge is to diagnose these conditions, as patients with
AIDS can be assintomatic. Therefore, rigorous monitoring is
required.
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